# Models ## List `agents.evaluation_metrics.models.list(ModelListParams**kwargs) -> ModelListResponse` **get** `/v2/gen-ai/models` To list all models, send a GET request to `/v2/gen-ai/models`. ### Parameters - `page: Optional[int]` Page number. - `per_page: Optional[int]` Items per page. - `public_only: Optional[bool]` Only include models that are publicly available. - `usecases: Optional[List[Literal["MODEL_USECASE_UNKNOWN", "MODEL_USECASE_AGENT", "MODEL_USECASE_FINETUNED", 4 more]]]` Include only models defined for the listed usecases. - MODEL_USECASE_UNKNOWN: The use case of the model is unknown - MODEL_USECASE_AGENT: The model maybe used in an agent - MODEL_USECASE_FINETUNED: The model maybe used for fine tuning - MODEL_USECASE_KNOWLEDGEBASE: The model maybe used for knowledge bases (embedding models) - MODEL_USECASE_GUARDRAIL: The model maybe used for guardrails - MODEL_USECASE_REASONING: The model usecase for reasoning - MODEL_USECASE_SERVERLESS: The model usecase for serverless inference - `"MODEL_USECASE_UNKNOWN"` - `"MODEL_USECASE_AGENT"` - `"MODEL_USECASE_FINETUNED"` - `"MODEL_USECASE_KNOWLEDGEBASE"` - `"MODEL_USECASE_GUARDRAIL"` - `"MODEL_USECASE_REASONING"` - `"MODEL_USECASE_SERVERLESS"` ### Returns - `class ModelListResponse: …` A list of models - `links: Optional[APILinks]` Links to other pages - `pages: Optional[Pages]` Information about how to reach other pages - `first: Optional[str]` First page - `last: Optional[str]` Last page - `next: Optional[str]` Next page - `previous: Optional[str]` Previous page - `meta: Optional[APIMeta]` Meta information about the data set - `page: Optional[int]` The current page - `pages: Optional[int]` Total number of pages - `total: Optional[int]` Total amount of items over all pages - `models: Optional[List[APIModel]]` The models - `id: Optional[str]` Human-readable model identifier - `agreement: Optional[APIAgreement]` Agreement Description - `description: Optional[str]` - `name: Optional[str]` - `url: Optional[str]` - `uuid: Optional[str]` - `created_at: Optional[datetime]` Creation date / time - `is_foundational: Optional[bool]` True if it is a foundational model provided by do - `name: Optional[str]` Display name of the model - `parent_uuid: Optional[str]` Unique id of the model, this model is based on - `updated_at: Optional[datetime]` Last modified - `upload_complete: Optional[bool]` Model has been fully uploaded - `url: Optional[str]` Download url - `uuid: Optional[str]` Unique id - `version: Optional[APIModelVersion]` Version Information about a Model - `major: Optional[int]` Major version number - `minor: Optional[int]` Minor version number - `patch: Optional[int]` Patch version number ### Example ```python from gradient import Gradient client = Gradient() models = client.agents.evaluation_metrics.models.list() print(models.links) ```