## List `gpu_droplets.autoscale.list(AutoscaleListParams**kwargs) -> AutoscaleListResponse` **get** `/v2/droplets/autoscale` To list all autoscale pools in your team, send a GET request to `/v2/droplets/autoscale`. The response body will be a JSON object with a key of `autoscale_pools` containing an array of autoscale pool objects. These each contain the standard autoscale pool attributes. ### Parameters - **name:** `str` The name of the autoscale pool - **page:** `int` Which 'page' of paginated results to return. - **per\_page:** `int` Number of items returned per page ### Returns - `class AutoscaleListResponse` - **meta:** `MetaProperties` Information about the response itself. - **autoscale\_pools:** `Optional[List[AutoscalePool]]` - **id:** `str` A unique identifier for each autoscale pool instance. This is automatically generated upon autoscale pool creation. - **active\_resources\_count:** `int` The number of active Droplets in the autoscale pool. - **config:** `Config` The scaling configuration for an autoscale pool, which is how the pool scales up and down (either by resource utilization or static configuration). - `AutoscalePoolStaticConfig` - `AutoscalePoolDynamicConfig` - **created\_at:** `datetime` A time value given in ISO8601 combined date and time format that represents when the autoscale pool was created. - **droplet\_template:** `AutoscalePoolDropletTemplate` - **name:** `str` The human-readable name set for the autoscale pool. - **status:** `Literal["active", "deleting", "error"]` The current status of the autoscale pool. - `"active"` - `"deleting"` - `"error"` - **updated\_at:** `datetime` A time value given in ISO8601 combined date and time format that represents when the autoscale pool was last updated. - **current\_utilization:** `Optional[CurrentUtilization]` - **links:** `Optional[PageLinks]` ### Example ```python from do_gradientai import GradientAI client = GradientAI() autoscales = client.gpu_droplets.autoscale.list() print(autoscales.meta) ```