Skip to content
  • Auto
  • Light
  • Dark

Update

Update a Workspace
agents.evaluation_metrics.workspaces.update(strpath_workspace_uuid, WorkspaceUpdateParams**kwargs) -> WorkspaceUpdateResponse
put/v2/gen-ai/workspaces/{workspace_uuid}

To update a workspace, send a PUT request to /v2/gen-ai/workspaces/{workspace_uuid}. The response body is a JSON object containing the workspace.

ParametersExpand Collapse
workspace_uuid: str
description: Optional[str]

The new description of the workspace

name: Optional[str]

The new name of the workspace

workspace_uuid: str
ReturnsExpand Collapse
class WorkspaceUpdateResponse:
workspace: Optional[APIWorkspace]
agents: Optional[List[APIAgent]]

Agents

created_at: Optional[datetime]

Creation date

formatdate-time
created_by: Optional[str]

The id of user who created this workspace

formatuint64
created_by_email: Optional[str]

The email of the user who created this workspace

deleted_at: Optional[datetime]

Deleted date

formatdate-time
description: Optional[str]

Description of the workspace

evaluation_test_cases: Optional[List[APIEvaluationTestCase]]

Evaluations

archived_at: Optional[datetime]
created_at: Optional[datetime]
created_by_user_email: Optional[str]
created_by_user_id: Optional[str]
dataset: Optional[Dataset]
created_at: Optional[datetime]

Time created at.

formatdate-time
dataset_name: Optional[str]

Name of the dataset.

dataset_uuid: Optional[str]

UUID of the dataset.

file_size: Optional[str]

The size of the dataset uploaded file in bytes.

formatuint64
has_ground_truth: Optional[bool]

Does the dataset have a ground truth column?

row_count: Optional[int]

Number of rows in the dataset.

formatint64
dataset_name: Optional[str]
dataset_uuid: Optional[str]
description: Optional[str]
latest_version_number_of_runs: Optional[int]
metrics: Optional[List[APIEvaluationMetric]]
description: Optional[str]
inverted: Optional[bool]

If true, the metric is inverted, meaning that a lower value is better.

metric_name: Optional[str]
metric_type: Optional[Literal["METRIC_TYPE_UNSPECIFIED", "METRIC_TYPE_GENERAL_QUALITY", "METRIC_TYPE_RAG_AND_TOOL"]]
Accepts one of the following:
"METRIC_TYPE_UNSPECIFIED"
"METRIC_TYPE_GENERAL_QUALITY"
"METRIC_TYPE_RAG_AND_TOOL"
metric_uuid: Optional[str]
metric_value_type: Optional[Literal["METRIC_VALUE_TYPE_UNSPECIFIED", "METRIC_VALUE_TYPE_NUMBER", "METRIC_VALUE_TYPE_STRING", "METRIC_VALUE_TYPE_PERCENTAGE"]]
Accepts one of the following:
"METRIC_VALUE_TYPE_UNSPECIFIED"
"METRIC_VALUE_TYPE_NUMBER"
"METRIC_VALUE_TYPE_STRING"
"METRIC_VALUE_TYPE_PERCENTAGE"
range_max: Optional[float]

The maximum value for the metric.

formatfloat
range_min: Optional[float]

The minimum value for the metric.

formatfloat
name: Optional[str]
star_metric: Optional[APIStarMetric]
metric_uuid: Optional[str]
name: Optional[str]
success_threshold: Optional[float]

The success threshold for the star metric. This is a value that the metric must reach to be considered successful.

formatfloat
success_threshold_pct: Optional[int]

The success threshold for the star metric. This is a percentage value between 0 and 100.

formatint32
test_case_uuid: Optional[str]
total_runs: Optional[int]
updated_at: Optional[datetime]
updated_by_user_email: Optional[str]
updated_by_user_id: Optional[str]
version: Optional[int]
name: Optional[str]

Name of the workspace

updated_at: Optional[datetime]

Update date

formatdate-time
uuid: Optional[str]

Unique id

Update a Workspace
from gradient import Gradient

client = Gradient()
workspace = client.agents.evaluation_metrics.workspaces.update(
    path_workspace_uuid="\"123e4567-e89b-12d3-a456-426614174000\"",
)
print(workspace.workspace)
{
  "workspace": {
    "agents": [],
    "created_at": "2023-01-01T00:00:00Z",
    "created_by": "12345",
    "created_by_email": "[email protected]",
    "deleted_at": "2023-01-01T00:00:00Z",
    "description": "example string",
    "evaluation_test_cases": [
      {
        "archived_at": "2023-01-01T00:00:00Z",
        "created_at": "2023-01-01T00:00:00Z",
        "created_by_user_email": "[email protected]",
        "created_by_user_id": "12345",
        "dataset": {
          "created_at": "2023-01-01T00:00:00Z",
          "dataset_name": "example name",
          "dataset_uuid": "123e4567-e89b-12d3-a456-426614174000",
          "file_size": "12345",
          "has_ground_truth": true,
          "row_count": 123
        },
        "dataset_name": "example name",
        "dataset_uuid": "123e4567-e89b-12d3-a456-426614174000",
        "description": "example string",
        "latest_version_number_of_runs": 123,
        "metrics": [
          {
            "description": "example string",
            "inverted": true,
            "metric_name": "example name",
            "metric_type": "METRIC_TYPE_UNSPECIFIED",
            "metric_uuid": "123e4567-e89b-12d3-a456-426614174000",
            "metric_value_type": "METRIC_VALUE_TYPE_UNSPECIFIED",
            "range_max": 123,
            "range_min": 123
          }
        ],
        "name": "example name",
        "star_metric": {
          "metric_uuid": "123e4567-e89b-12d3-a456-426614174000",
          "name": "example name",
          "success_threshold": 123,
          "success_threshold_pct": 123
        },
        "test_case_uuid": "123e4567-e89b-12d3-a456-426614174000",
        "total_runs": 123,
        "updated_at": "2023-01-01T00:00:00Z",
        "updated_by_user_email": "[email protected]",
        "updated_by_user_id": "12345",
        "version": 123
      }
    ],
    "name": "example name",
    "updated_at": "2023-01-01T00:00:00Z",
    "uuid": "123e4567-e89b-12d3-a456-426614174000"
  }
}
Returns Examples
{
  "workspace": {
    "agents": [],
    "created_at": "2023-01-01T00:00:00Z",
    "created_by": "12345",
    "created_by_email": "[email protected]",
    "deleted_at": "2023-01-01T00:00:00Z",
    "description": "example string",
    "evaluation_test_cases": [
      {
        "archived_at": "2023-01-01T00:00:00Z",
        "created_at": "2023-01-01T00:00:00Z",
        "created_by_user_email": "[email protected]",
        "created_by_user_id": "12345",
        "dataset": {
          "created_at": "2023-01-01T00:00:00Z",
          "dataset_name": "example name",
          "dataset_uuid": "123e4567-e89b-12d3-a456-426614174000",
          "file_size": "12345",
          "has_ground_truth": true,
          "row_count": 123
        },
        "dataset_name": "example name",
        "dataset_uuid": "123e4567-e89b-12d3-a456-426614174000",
        "description": "example string",
        "latest_version_number_of_runs": 123,
        "metrics": [
          {
            "description": "example string",
            "inverted": true,
            "metric_name": "example name",
            "metric_type": "METRIC_TYPE_UNSPECIFIED",
            "metric_uuid": "123e4567-e89b-12d3-a456-426614174000",
            "metric_value_type": "METRIC_VALUE_TYPE_UNSPECIFIED",
            "range_max": 123,
            "range_min": 123
          }
        ],
        "name": "example name",
        "star_metric": {
          "metric_uuid": "123e4567-e89b-12d3-a456-426614174000",
          "name": "example name",
          "success_threshold": 123,
          "success_threshold_pct": 123
        },
        "test_case_uuid": "123e4567-e89b-12d3-a456-426614174000",
        "total_runs": 123,
        "updated_at": "2023-01-01T00:00:00Z",
        "updated_by_user_email": "[email protected]",
        "updated_by_user_id": "12345",
        "version": 123
      }
    ],
    "name": "example name",
    "updated_at": "2023-01-01T00:00:00Z",
    "uuid": "123e4567-e89b-12d3-a456-426614174000"
  }
}