Retrieve from Knowledge Base
retrieve.documents(strknowledge_base_id, RetrieveDocumentsParams**kwargs) -> RetrieveDocumentsResponse
/{knowledgeBaseId}/retrieve
Retrieve relevant documents from a knowledge base using semantic search.
This endpoint:
- Authenticates the request using the provided bearer token
- Generates embeddings for the query using the knowledge base's configured model
- Performs vector similarity search in the knowledge base
- Returns the most relevant document chunks
Parameters
knowledge_base_id: str
formatuuid
num_results: int
Number of results to return
minimum1
maximum100
query: str
The search query text
minLength1
alpha: Optional[float]
Weight for hybrid search (0-1):
- 0 = pure keyword search (BM25)
- 1 = pure vector search (default)
- 0.5 = balanced hybrid search
formatdouble
minimum0
maximum1
Returns
Retrieve from Knowledge Base
from gradient import Gradient
client = Gradient()
response = client.retrieve.documents(
knowledge_base_id="550e8400-e29b-41d4-a716-446655440000",
num_results=5,
query="What are the best practices for deploying machine learning models?",
)
print(response.results)
{
"results": [
{
"metadata": {
"source": "bar",
"page": "bar",
"category": "bar",
"timestamp": "bar"
},
"text_content": "Machine learning models should be deployed with proper monitoring and versioning..."
}
],
"total_results": 5
}Returns Examples
{
"results": [
{
"metadata": {
"source": "bar",
"page": "bar",
"category": "bar",
"timestamp": "bar"
},
"text_content": "Machine learning models should be deployed with proper monitoring and versioning..."
}
],
"total_results": 5
}